## Redroot pigweed (Amaranthus retroflexus).

Model summary (Table 3) and analysis led by Aaron Heinrich, OSU CSS Dept., with assistance from Ed Peachey, Nick Andrews, Hiedi Noordijk, and Leonard Coop, Oregon State University. CROPTIME project funded by USDA-Western SARE.

**Methods:** Using events monitored in the field, the lowest C.V. (coefficient of variation) was used to determine lower (Table 2 & Fig. 1) and upper threshold values based on 7 site-years, all from the Willamette Valley of Oregon (2013 n=3; 2014 n=2; and 2015 n=2). Sites (Table 1) included the OSU Vegetable Farm (near Corvallis, OR), Gathering Together Farm (near Philomath, OR), the OSU NWREC research farm (near Aurora, OR), and Sauvie Island, OR. One site-year (2014, OSU Vegetable Farm, Corvallis, OR) was removed from the analysis as an outlier. Degree-day values were calculated by the corn GDD method (also used by Huang et al. 2000 for this weed species) using the online calculator at uspest.org. The single sine method was also compared to the corn GDD method but produced higher C.V. values (data not shown).

The main model interval used to determine thresholds was from cotyledon stage to first germinable seed (the date when 1 or more seed germinated following treatment with gibberellic acid and incubated in the dark at 30°C). The stages from cotyledon to first emerging infloresence, and from first inflorescence to first germination, were also tested for lowest C.V. (Table 2).

Table 1. Primary data used to derive redroot pigweed model.

|       |      |        |        |                 |            | Date first  | Days coty to first |                |
|-------|------|--------|--------|-----------------|------------|-------------|--------------------|----------------|
| Site- |      |        |        |                 | Start date | germinable  | germinable         |                |
| year  | Year | Site   | Field  | Weather station | (coty)     | seed        | seed               | (46/89)        |
| 1     | 2013 | Sauvie |        | E5POR ODEQ      | 5/12/13    | 7/16/13     | 65                 | 1126           |
| 2     | 2013 | 47th   |        | ARAO agrimet    | 5/31/13    | 7/16/13     | 46                 | 915            |
| 3     | 2013 | VF     | A7     | CRVO agrimet    | 6/21/13    | 8/9/13      | 49                 | 1104           |
| 4     | 2014 | GTF    |        | CRVO agrimet    | 5/28/14    | 7/25/14     | . 58               | 1087           |
| 5     | 2014 | VF     | Pop-up | CRVO agrimet    | 5/23/14    | 7/16/14     | 54                 | 967            |
|       | 2014 | VF     | Fum    | CRVO agrimet    | 6/9/14     | 7/21/14     | 42                 | "removed→(843) |
| 6     | 2015 | VF     | EF     | CRVO agrimet    | 07/02/15   | 8/21/15     | 50                 | 1182           |
| 7     | 2015 | NWREC  | June   | ARAO agrimet    | 06/29/15   | 8/14/15     | 46                 | 1166           |
|       |      |        |        |                 |            | Mean:       | 51.3               | 1078.1         |
|       |      |        |        |                 |            | SD:         | 7.5                | 100.4          |
|       |      |        |        |                 |            | CV (sd/mean | 14.6               | 9.3            |

Table 2. Days and cumulative GDD (Tlow=46F and Tmax=89F) for each growth interval.

|                                                                           |        |        | CV     |       |             | CV    |
|---------------------------------------------------------------------------|--------|--------|--------|-------|-------------|-------|
|                                                                           | Mean   | Range  | (days) | Mean  |             | (GDD) |
| Growth interval                                                           | (days) | (days) | (%)    | (GDD) | Range (GDD) | (%)   |
| Cotyledon to emerging infloresence (0.25-0.5" visible)                    | 28     | 25-33  | 13.4   | 537   | 368-633     | 19.4  |
| Emerging infloresence (0.25-0.5" visible) to 1st germination <sup>1</sup> | 23     | 17-28  | 16.3   | 553   | 434-613     | 13.2  |
| Cotyledon to 1st germination <sup>1</sup>                                 | 53     | 46-65  | 13.3   | 1078  | 915-1182    | 9.3   |
| Lower 95% CI                                                              |        |        |        | 1004  |             |       |
| Upper 95% CI                                                              |        |        |        | 1152  |             |       |

<sup>&</sup>lt;sup>1</sup>Date when 1 or more seed germinated following treatment with gibberellic acid and incubated in the dark at 30C

Table 3. Degree-Day Model Summary.

Model: Redroot Pigweed, Amaranthus retroflexus

**Calculation method:** Corn GDD (this method is based on simple average DDs but substitutes Tupper when the daily max temperature exceeds Tupper; and substitutes Tlow when the daily low temperature is lower than Tlow).

**Tlow:** 46°F 7.8°C **Tupper:** 89°F 31.7°C

**Region of known use:** Willamette Valley, Western Oregon **Validation status:** New research model based on 7 site-years

| Events table                            | DDs (F) | DDs (C) |
|-----------------------------------------|---------|---------|
| 0. Cotyledon (start)                    | 0       | 0       |
| 1. 2 leaves present                     | 121     | 67      |
| 2. 4-5 leaves present                   | 189     | 105     |
| 3. 6-7 leaves present                   | 277     | 154     |
| 4. First flowering                      | 537     | 298     |
| 5. First germinable seed (lower 95% CI) | 1004    | 558     |
| 6. First germinable seed (mean)         | 1078    | 599     |
| 7. First germinable seed (upper 95% CI) | 1152    | 640     |

## First germinable seed Thi=130

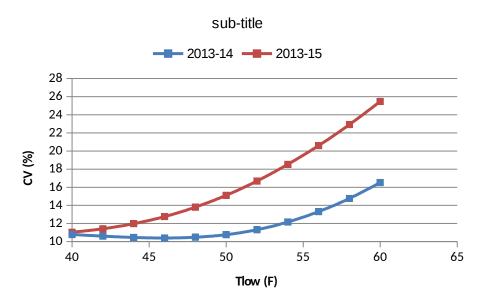



Figure 1. Lowest C.V. used to determine Tlow for redroot pigweed.

## **References Cited**

Huang, J.Z., A. Shrestha, M. Tollenaar, W. Deen, H. Rahimian, and C.J. Swanton. 2000. Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Can. J. Plant Sci. 80: 929-938.

Shrestha, A. and C. J. Swanton. 2007. Parameterization of the Phenological Development of Select Annual Weeds Under Noncropped Field Conditions. Weed Science: September 2007, Vol. 55, No. 5, pp. 446-454.